
Performance Best Practices
Last Modified on 01/16/2018 7:07 am EST

You can improve performance for several dynamic workflow components. There are an unlimited
number or ways to develop a solution. When building a solution, balance your requirements with your
resources.

Database Performance

You can improve database performance:

During development
During production
With ongoing maintenance

During development

Avoid creating tables a high number of columns.

During production

Performance issues might occur any time a select is made, such as during form loading, reports, and so
on. If you encounter these issue, you should:

1. Determine where DB queries occur in your solution.
2. Run SQL Profiler to identify which queries take the longest time to run.
3. Determine why these queries take a long time to run.
4. Run each of these queries with an execution plan on it. Check which Joins take the most time.
5. Add indexes to the appropriate tables, or write a more effective query.

Be aware that if you add an index, retrieval time is shortened, but data input takes longer. For more
information about enhancing DB performance, read this Red Gate E-Book, specifically the sections on T-
SQL Tips and Index Tips.

Ongoing maintenance

Periodically run the SQL Profiler to identify slow procedures. Review the execution plan for these
slow procedures to determine where you can place an index on UACTS, UWF, or UTCMB.
Back up your database on a daily basis.
Regularly check the error log file to determine if the log size is normal. If no, investigate the errors.

Forms

Keep it simple. Only add necessary functionality to forms. Unnecessary functionality extends
creation time and does not always result in better user experience.
Use wizards, for example Next -> Next -> Next, rather than including all fields on a single screen.
Try using server code.
If your form loads information from a service, make sure you optimize the message size. To track
the message size, enable the integration diagnostic in the web.config file.
Consolidate SQL calls. If you have many {sql:...} expressions in your form markup, check
whether you can use a single call and split the data afterwards.
Try to define a select key in each table data query. If you do not define a select key, we recommend

that you apply a filter on each execution.
If your forms use a Stored Procedure or a Web Service that returns a large amount of data, use
paging, such as for grids or combos. We recommend that you implement pagin on the side of the
Stored Procedure or a Web Service.
After you develop a form, run the form when the SQL Profiler is open to verify that your DB calls are
optimized.
If you are mapping more than one field (column) from the same record, use data source.

ds={Form1}.Query("vltemslnStock")
ds.Name
ds.Price
...

When you use a combo with many entries, use the load-on demand option. If the message is too
large, ask the party that is exposing the service for optimization. If your service returns many
records, ask the party if it supports paging.
Avoid using extensive logic with third-party integration before the first form. Instead, look for an
offline solution.
For very slow system, consider loading the grids from the service side, or on demand. We
discourage using code behind forms, use this as an option of last resort.
Cora SeQuence forms are standard .NET forms, so the standard best practices also apply. For more
information see the .NET Forms Best Practices.

Expressions

When you use queries in expressions, be aware that Cora SeQuence retrieves the entire table, which it
filters by the select key defined in the table query. The retrieved data is cached for each workflow
execution until the activity is executed again, or explicitly modified by the code.

When you have a table without a key definition, use AsQueryable() to filter the data in the DB, not at
the server level.

{Form1}.Query("vItemsInStock").AsQueryable().Where(...

If you need user details, use the User function to get the user by user id, or rt.currentuser if it is the
current user. Cora SeQuence then uses the cached object and does not bring the value from the DB.
In the expression, use AsQueryable() and then Where(...). This applies the Where filter on the DB
side. Consider also using Select(...) to retrieve specific columns. For example:

{StartTest}.Query("UACT1").AsQueryable().Where(Field("fldld")>0).Select(Field("fldld"))

Other Performance Tips

Do not use activities for decoration. On high-volume systems, activities can have negative effects on
the DB, and eventually on performance.
Set Link mode to automatic wherever possible, especially after a human activity. This way, the user
receives an automatic response that data was saved and the BRS will perform the remaining activity
execution.
If you use Stored Procedures, Views, or Keys, add indexes on the relevant fields in User Tables. Do
not add indexes to System Tables.

If you use a Web Service, check how often it is called. If it is called frequently, consider a different
implementation.
Each query execution can degrade performance. For example, if your form includes a query that is
executed from three different places, the query is executed three times.
Try to calculate and render on the server side, not the client side.
Try to minimize post-backs and calls to the server.

